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SECTION 1
INTRODUCTION

There exists in the literature several papers on the flight
mechanics of reentry vehicles. Unfortunately, there is little
in the literature that focuses on the ascent performance of a
booster configuration from launch to apogee. Consequently,
there is a need for both approximate analytical and exact
numerical trajectory solutions. The former could be used for
preliminary design purposes. The latter could be used for
performance trade-offs of finalized configurations.

This investigation has two objectives. The first is to
develop approximate analytical trajectory solutions. The second
is to determine optimal trajectories for a specified criterion.
Numerical results will be for a specific configuration. The
approximate solutions are segments for an ascent trajectory that
can be patched together to yield a complete ascent trajectory.
The segments are maximum lift with power-on, constant flight
path with power-on, and zero angle-of-attack with both power-on
and power-off. For the optimal trajectories, the payoffs are

maximum speed at burnout or apogee and minimum fuel or time to
reach apogee.

In Section II, the assumptions employed in the investiga-
tion are presented. Sections III and IV contain the approximate
and optimal trajectory results.
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SECTION II

ASSUMPTIONS

Spherical Symmetry

The modeling of the atmospheric density and the accelera-
tion of gravity can be greatly simplified if it can be assumed
that: 1) the density is a function of only the altitude and 2)
the acceleration of gravity is a function of only the radial
distance from the center of the planet. The earth’s surface is
an oblate spheroid of eccentricity 0.00335. The ratio of the
radius at the poles to that at the Equator is 0.99665. The
difference in the surface radius at the equator and either pole
is approximately seventy thousand feet. The ratio of the ac-
celeration of gravity at the poles to that at the equator is
approximately 1.0018. For the purpose of this effort, it suf-
fices to treat the earth as spherical

The acceleration varies inversely proportional as the
square of the radius from the center of earth. The nominal
thickness of the earth’'s atmosphere is of the order of 275,000
feet. The ratio of the acceleration of gravity at the outer
edge of the atmosphere to that at the earth’s surface is ap-
proximately 0.972. In this study the acceleration of gravity
will be assumed to be constant. The sea level value of 32.174
feet/second/second will be used.

Exponential Atmosphere

The relationship for the rate of change of density with
respect to altitude can be approximated by

- = Bp (1)

-----



B=_ x = = e 8 (2) 2

The density relation is exact across layers where the tempera-
ture is constant. In layers where the temperature is linear
with respect to altitude, Equation (1) is approximate. If an s
approximate value is used across the latter layer, then Equation
(1) takes on the following from for all layers.

B(h - hR)
P = PgRe (3)

Let

. o)

y =1lnp, A = 1n[pR

(4) .
Then Equation (3) can be rewritten as ,
y = A + Bh (5) -
Approximation for A and B can be determined by doing regression "
analysis on Equation (5). Using the 1962 U.S. Standard ;
Atmosphere as the basis gives the results in Table 1. »
The accuracy of these approximations are presented in Table 2 .
where the error is detined as N
%acT - 9THEOR 3

% ERROR = - x100

ACT

and oaCT is the 1962 density ratio and 9 THEOR is the approximate .
value. The assumed form for the density ratio for the sub- :
sequent performance analysis is ‘.
.
’
o =ebh A (6) :
,
”
-,
-
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Aerodynamic Data

For high speed trajectory analysis it will be assumed that
the aerodynamic coefficients can be predicted by Newtonian
theory. This theory is based upon the assumption that the
pressure at any point on the windward side of the vehicle can be
predicted by

C_ = K(n-1)? (7)
P
Let the scaler product be defined by sin§ ,then
.2
C = ksin"§ (8)
P

The drag and litft components due to the pressure force are

evaluated from

L - -

- = J ] C (k'n) dA (9)
q P

D - —

- = C (i-n) dA (10)
e p

Since
k-n = cos$ (11)

Equations (9) and (10) become

K J [ sin?8coss8dA (12)

Qo ot e

K J l sinsdA (13)

If the angle 8§ is constant everywhere over the vehicle then the
drag and lift coeftficients become

0 913



KsinZSCOSS

C Ksin’s (15)

D
An additional component should be added to the drag coefficient
to account for bluntness and viscous effects, thus

C. = Ksin®8 + C

D D

8]

The increment CD is a strong function of nose bluntness and
o}
generally is also altitude dependent.

The approximation is going from Equations (12) and (13) to
Equations (14) and (15) is presented in the appendix where

§ = o + ®, (17)
Seven different configurations were examined. The correlation
shows that Equations (14) and (16) are adequate for the purpose
of this investigation.

Previous studies have shown that for reentry trajectory
analysis, the lift-to-drag ratio is an important parameter. For
ascent performance, the lift coefficient versus angle-of-attack
is an important function for high thrust to weight rocket en-
gines. Consider the aerodynamic ratio E defined by

Ksin28coss sin28c058

.3
Ksin 8§ + CD
o

L
D

sin38 + C




*
The maximum value of L/D, E , is obtained by optimizing with

respect to 8§. Differentiating Equation (18) with respect to §
and setting the resulting expression equal to zero gives the
necessary condition for E*

sin38™ + 3Csin?s™ - 2¢ = 0 (20)

This equation can be easily solved for 8* as a function of C.
In general, however, we are interested in determining the
parameters 8* and C as a function of E*. Solving Equation (18)
for C gives

1

* x *
C = —-sin’8 coss” - sin’s (21)

t

Substituting Equation (21) for C into Equation (20) gives a
relation between E* and 8*

* 2 - 35in28*
E = x ry (22)
3sin8§ cosé§

Using double angle formulas, this reduces to

% + cosZS*
Ex = ———-—2—-—*———— (23)
sin®§

1/2

-

*
This is easily solved for § as a function of E
2

3+ 25*[2*2 + ]
cos" 8§ = (24)
2E¥ + 1)

w|

* *

Given E , § 1is determined from Equation (24) and C s obtained
*

from Equation (21). These parameters and the ratio of CD at §

to CD are presented in Table 3.
o)




A
For a parabolic polar, CD(S )/CD is 2.
o

The maximum value of the 1lift coefficient is obtained from
optimization of Equation (14) with respect to 8. The necessary
condition is

Zsin8c0528 - sin38 = 0 (25)

The solution for § is

§ = sin *(2/3)*/2 = 54.74° (26) ’

The value of maximum CL is i
Cp = 0.3849K (27) -

MAX ’

In Figures 1 through 3, the aerodynamic parameters are
presented. In Figures 1 and 3, § equals o.

The drag coefficient can be written in polar form by

eliminating § from the CL and CD relations. Expanding Equation .
(14) gives a cubic equation in sin®’8§. The solution of this 1
cubic equation is X
2 1 ry £
sin®§ = 5-(1 - COsSM + J3sinp) (28) -
where R
r
- 2
1, 27 (CL :
M = 3-cos 1 - =1 & (29) .:

Substituting for sind in Equation (16) gives R

N
PN




P

28 s A B A

3/2
1 —
CD = CDO + K 3-(1 - COSM + ]3 sinu) (30)

For small values of CL/K, the parameters become approximately

CL
sin8 = K (31)
3/2
L
CD = CD + 732 (32)
o K
The optimal value for CE is
*
cf - (2k*/? o y2/3 (33)
o)
. L
The optimal value for CD is
ch - 3c
D - D (34)
o
The maximum value of E is
1/3
o L[
=3 CD (35)
o

In Table 4, exact aerodynamic parameters from Equations (14) and

(lo) and approximate values from previous relations are

presented. It can be seen that a polar of the form in Equation

(32) gives fairly good agreement for E* when E* is greater than -
1.5. If the trajectory requires very accurate data for CL and

CD’ then the approximate relations should not be used. Accurate

data should be used with accurate interpolation techniques
employed.

2




Propulsion Characteristics

Rocket propulsion characteristics will be used for the .

performance analysis. The mass burning rate is determined from .
_ Wprop
W = - (36)
B
The burn time, tB’ is determined from
LroTaL ;
tB =TT (37) “

where ITOTAL is the total impulse and has units (force)x(time).
Table 5 presents propulsion characteristics for several
boosters. The speed change, AV, corresponds to the gravity free

r

solution in a vacuum.

Equations of Motion

B

From Reference 2, the equations of motion for the trajec-

tory analysis are

dv 1
- . _ . 2 . _ . .
it ° m FT gsiny + w'rcos¢(sinvycos¢ cosysinysing) (38)
dy 1 v? >
VEE = E-FNcoso - gcosy + -cosy + 2wV cosy cos¢
(39)
+ wzrcosw(cosy cos¢ + siny siny sino¢)
du 1 FNsino V2
VEE = a-—;;;;— - ;—-cosycoswtanw + 2wV(tanysinycose¢)
{39)
wlr
- sin¢) - Cosy-coswsinacosw
dr
- = Vsiny (41)

dt

..........




-t
.......

de Vcosycosy

dt ° “rcoso (42)
d¢ Vcosysiny

- T (43)
FT = Tcos(o + Sv) - D (44)
FN = Tsin(a + Sv) + L (45)

Some ot the terms in Equations (38) through (40) can be dropped.
The transport acceleration, wzr, is less than 0.4 percent of the
acceleration of gravity. The Coriolis acceleration, 2wV, is
approximately eleven percent of the acceleration of gravity and
therefore is important for long range high speed flight. For
low speed, short range trajectory, this term can be neglected.
For example, a boost and coast to apogee trajectory can neglect
the earth’s rotation. Also for boost and coast to apogee
problems, the term v¢/r in Equations (39) and (40) can be
neglected since these types of trajectories are over short
ranges. Thus, the earth can be treated as flat.

In the next section, we turn our attention to the boost and

coast to apogee problems.
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SECTION III

NOMINAL BOOST AND CLIMB PERFORMANCE

Both ground launches and air launches are important
problems. The primary difference between them is the boundary
conditions. Ground launch initial conditions are zero speed and
ninety degree launch angles. Air launches correspond to the
speed of the launch platform and zero flight path angle. This
effort has concentrated on air launches only.

A typical trajectory consists of the separation from the
carrier, prcpulsion ignition, pitch up to a specitied attitude,
and then an acceleration to burnout. This may be followed by
the separation of the booster and then a second boost to a
second burnout. After the boost phase or phases, the vehicle
coasts and decelerates to apogee. An impulse may follow to give
the desired orbital speed.

Five diffe-ent boost and climb segments are of interest.
They are as follows:

a. maximum lift, power-on

b. constant flight path, power-on

i

zero angle-of-attack, power-on

d. zero angle-of-attack, power-otf

e. optimum boost climb

The last problem is addressed in Section IV. This problem

is difficult and merits attention in a section by itself. The
difficulty is determining the optimal controls. The first four

Li
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make up a typical sequence from launch to apogee. Each of the

first four problems is solved in the following subsections.

Flight is in the equational plane and the earth’s rotation
is neglected. The equation for the rate of change of r, r, is
replaced with the time rate of change of the density. The
result is

o = BoVsiny (46)

where B is defined in Equation (6). The remaining differential
equations are

) T
W= - T (47)
sp

. 1

vV = E'FT - gsiny (48)

. 1 9

Y = ﬁ;'FN - g-cosy (49)
\)

0 = —-cosy (50)

where
FT = Tcos(o + Sv) - D (51)
FN = Tsin(o + SV) + L (52)

Nondimensional transformation are introduced in order to
normalize the variables to the order of one. Let

u = V/V(o), w = W/KW(o), B = t/tR (53)

We are free to select the reference time, t The differential

R*

equations become




o = A,0u siny (5¢4)
w = - )\2 (55)
, T
u = xs(a-cosb - d - siny) (56)
A
, 3 T
Y = —G'(G'Sins + n - cosy) (57)
0 = x“ucosy (58)
where
AL S tRBV(O) (59)
tRT WpRop
A = e——— = ———— (60)
2 W(O)ISp W(0)
gtn
Xa = 0 (6l)
V(O)tR
)«“ =R (62)
§ = + SV (63)
D L T
=0 "R T Ro (ed)

In Equation (50), r has been approximated by R. ln Equation
(62), the parameter A, is very small. Thus the change in the
downrange is small. In Equations (54) through (58), differen-
tiation is with respect to the nondimensional time 8.

The approach is to develop approximate closed form solu-
tions for the different trajectory segments. These approximate
solutions are compared with the exact solutions obtained by
numerical integration of the cdifferential equations of motion.
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This comparison offers some evidence as to the fidelity of the
approximate solutions. As expected, some accuracy is lost
through introducing assumptions that make it possible to
analytically integrate the differential equations. But, one
advantage is that an approximate solution can be easily obtained
through substitution of specific values for the parameters. HWe
turn our attention to the first problem. The booster charac-
teristics correspond to configuration 17 in Table S.

Maximum Lift, Power-0On

This segment corresponds to the initial rotation after
launch. The initial conditions are the launch conditions. The
terminal conditions are free. Integrating Equation (55) gives:

w=1 - AZB (65)

Assume that the flight path angle is small and the angle-of-
attack is constant. Also, assume that the change in the drag
coefficient is negligible, which is a questionable assumption,
and the change in the density is negligible, which is
reasonable. Then the drag ratio in Equation (64) is ap-
proximately

2
-d(0)

Equation (56) is approximately

A
3

u' = ——-[TCOSS - uzd(O)]
W

Ceoembining with Equation (55) and integrating gives

L I I N o
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u = As N+ 1 -x {68)
2 w & 4 1
A5 -1
where
TCcosS A3
As = d(o) ’ AG = 2 :;-JTd(O)coss (69)

In a manner like that for d, n is approximately

2
u

n = n(o) ~— (70)
w

At high angles-of-attack, the right side of Equation (57) is
approximately n, since

T
n > G-sin& -COSY (71)

Combining approximate forms for Equations (56) and (57) gives

dvy n(0)u

— = (72)

du tcos§ - d(0)u?
Integrating gives

1 fr

Yy = y(0) - 3 E(O)ln't:;'(—oy (73)

where
no)y Loy CLt® ,
E(C) = doy - Doy = CD(O)' fT = Tcos8 - d(0)u (74)

Combining Equations (54) and (56) gives approximately




.......

A Ouy
do 1 (75)

[TCOSS - d(O)uz]

If the change in the weight is neglected, i.e., assume w = 1,
then Equation (75) can be integrated

o 1 A1 1 fT
in 30 - T 2dio) X *ly(0) + — E(O)lnf (0)]1ln fT(O)
{76)
E(0) Al 2 2
* BaToy X" [lnfT] - [ln fT(O)]
Combining Equations (58) and (56) gives approximately
dae A“u
du - X, . (77)
- [TCOSS - d(0)u ]
w
Assuming w = 1 permits integration
1 M fr
e = 6(0) - 2d(0)'I;'ln f;TBT (78)

In Table 6, the comparison between the exact and ap-
proximate solutions is presented for the first ten seconds. The
flight path reached approximately thirty degrees. 1In light of
the fact that the exact solution included acceleration through
the transonic region, the agreement is quite good. The density
used in the results correspond to tabular values rather than
Ecguation (6;. Equation (6) gives a lower density, approximately
5.5 percent. Using this approximate value in the equation for
d(o) results in little difference for the speed, altitude, and
downrange. But the flight path angle is lower by approximately
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5.5 percent. The drag and lift coefficients are the initial

values.

Constant Flight Path, Power-0On

This is a path that could be followed once the initial
rotation is completed. The objective for this type of trajec-
tory is to establish an attitude or flight path angle that will
result in attaining specified apogee conditions. Generally, the
angle-of -atcack is small since high longitudinal accelerations 3
are desired for constant flight path angles. Equation (57)

gives

Tsind + wn = wcosy(0) (79)
The right side decreases with increasing time; therefore, the N
angle-of -attack must decrease as the speed increases. The ¥

initial conditions are those at the beginning of the segment
which are the final conditions at the end of the previous seg-
ment, e.g., the initial rotation.

It is assumed that the change in the drag in Equation (56)
is negligible. Combining Equations (55) and (56) and integrat-
ing gives

A
3 d

-[Tcoss - d(O)]ln w + = (w - 1)siny(0) (80)
2

-
"
.
1
ke
LA

Combining Equations (54) and (55), substituting Equation (80),

and then integrating gives




A

o 1 3
ln ooy - :;-31ny(0){(w - 1) - I;-[TCOSS - d(O)]

A
1 3

-[wlnw - (w - 1)] + ;-:—'(w - l)zsiny(O)}
2

Combining Equation s(58) and (54) and integrating gives

Alo (o4

6 = 6(0) + I:-coty(O)-ln 5(0)

(82)

The exact and approximate solutions are presented in Table
7. The agreement is surprisingly good in light of the assump-
tion made about the drag.

Zero Angle-of -Attack, Power-0On

Along this path, the lift is zero and the drag coefficient

is minimum since CD equals CD . This corresponds to maximum
o
acceleration, at least on a point performance basis. Over the

total segment, however, the integration of the drag may be
larger relative to positive angles-of-attack. This is at-
tributed to the fact that a zero angle-of-attack trajectory is
lower in the atmosphere; thus, the dynamic pressure may be
higher.

It will be assumed that the change in CD is negligible and
o)
the flight path angle is small. The flight path angle decreases

as the vehicle accelerates. It is assumed that the change in
the drag is negligible. The speed increases, but the density
ratio decreases., Equation (56) reduces to
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A
3

u = ——-[r - d(O)] (83)

w
Combining with Equation (55) and integrating gives

A
3

G= 1 - ;—-[r - d(O)]lnw (84)
2

Il

The inverse of this is required in order to integrate ¥y

eC(l - u) (85)

£ s r5 8.9

vhere

A
2

C - (86) N
Aa[r - d(O)] -

£ q

Combining the approximate differential forms for u and vy, sub-
stituting for w, and then integrating gives

(-cwl - (-0
1

y = v(0) - X—-Ce (87)

Combining Equations (54) and (56), substituting Equation (85)
and integrating gives

AL C

3" T o4 e -Cu -C
*1ln = - —-le (Cu + 1)y - e “(C + 1)v(0)
A o(0) 2
1 C

(88) ;
e%C 1 o (-1 (207 :
- - _(e-ZCu_ ze) + lnu + I — (ult- 1) 4

£ c2 2 i=1 i-it
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f_ = - d(o
T T ) (89)

Combining the approximate differential equations for © and u and
integrating gives

4
6 = 6(0) + ————-[(c + e - (cu+ 1)e‘C“] (90)

The solution for the nondimensional weight is
w=1 - AZB (91)

The exact and approximate solutions are presented in Table
8. The agreement is quite good.

Zero Anqgle-of -Attack, Power-0ff

This segment is the path after burnout up to apogee. The
objective is to reach apogee with minimum loss of energy. This
corresponds to minimum drag which is zero angle-of-attack on a
point performance basis. Assume that the aerodynamic forces are
negligible relative to the gravity. Equations (56) and (57) can
be combined to give

-— = utan (92)
Y Y

This is easily integrated to give

cosy(0)

u = —C—O_S;—— (93)

Substituting for u in Equation (57) and integrating gives

Xaﬂ

tany = tany(0) (94)

" cosvy(0)
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Combining Equations (54) and (56) and integrating gives

(o] 1

507 ° EI“-(u - 1) . 95)

1n

Combining Equations (58) and (57) and integrating gives

A
4

6 = 6(0) - ;—-coszy(O)[tanY - tany(O)] (96)
3

The comparison between the exact and approximate solutions
is presented in Table 9. The agreement is surprisingly good
considering the drag is neglected. It is desirable, however,

that the drag be negligible for the power-off coast to apogee.

The exact solution reaches apogee at 135.6 sec.

Complete Trajectories

With the relations derived earlier, it is easy to develop a
complete trajectory from launch to apogee. The initial condi-
tions are the launch conditions. Thereafter, the initial
conditions are the end conditions from the previous segment.

For comparison purposes, an approximate trajectory of 130
seconds was developed and compared with the exact. The ap-
proximate solutions were based upon the methods developed in the
previous sections. The first ten seconds of the trajectory was
maximum lift. The next twenty seconds was constant flight path
angle with power-on. The next thirty seconds was zero angle-of -
attack with power-on. The last seventy seconds was zero angle-
of ~attack with power-off. The exact and approximate solutions

are presented in Table 10.

Next we turn our attention to optimal boost climb trajec-

tory analysis.



SECTION IV

OPTIMAL BOOST CLIMB PERFORMANCE

The objective of this analysis is to determine the
aerodynamic controls as a function of time such that a boost
ascension trajectory occurs in some optimal manner. In all .
problems, the angle-of -attack is a control variable. In some )
problems, the thrust vector angle is also a control variable. i
When it is not, the thrust vector angle will be set equal to
zero.

5.

The optimal controls are a function of the performance
payoff criterion. There are three payoffs that are of interest:
the first is maximum speed, the second is minimum propellant to .
reach specified terminal conditions, and the third is minimum
time to reach apogee. The second payoff is equivalent to maxi-
mizing the burn out weight since the weight varies linearly with

time.

The relevant differential equations are Equations (54) "
through (57). Equation (58) can be dropped since 6 is not a
payoff criterion; it does not contain the control, and the other N
differential equations do not contain 6. Since Ao is a con-
stant, Equation (5%) can be replaced with its integral

£97)

where tBO is the burnout time. It is assumed that the thrust ‘ A

and aerodynamic coefficients are independent of altitude and }
Mach number. This appears to be a gross approximation, but N
generally the acceleration from subsonic to hypersonic speeds is :
.
&
’
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very rapid for high thrust to weight configurations. At hyper-
sonic speeds, the aerodynamic coefficients will be a function of
only the angle-of -attack.

The boost is at maximum thrust until burnout. For some
problems, this is the terminal condition. For other problems,
the vehicle coasts to apogee after burnout. This corresponds to

Y(Bf) =0 (98)

The optimal trajectory problems are identified in Table 11.
The solutions to Problems 4 and 9 are trivial. If the final
conditions are free, then minimum propellant or minimum time is
zero. Thus, the initial and final times are the same. Since
the propellant used is a function of time, Problems 5, 6, 7, and
8 are equivalent to 10, 11, 12, and 13, respectively.

The following examples will be addressed later on in this
section. In Problem 1, the payoff is the final speed and there
are no constraints. The remaining problems are apogee problems
and are defined as follows in Table 12.

Aerodynamic Relations

Since the drag and lift coefficients are respectively even
and odd functions, rewrite Equations (14) and l6) as follows

[
i

. 3 .
D Klsin“a] + LDO (99)

(@]
tl

L K|sino|sinacosa (100)

where |x| means absolute value of x. For the configuration to

be used in this section, CD = 1.035 and K = 35.30. In order to
o)

develop necessary and sufficient conditions tor the optimal

controls, we need first and second derivatives ot CL and CD with

respect to a. The derivatives are
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2 2
CL = K(2cos o - sin o) |sina| (1lol)

@]
"

L K(Zcoszm - 7sin2a)cosu o > 0

(102)

-K(2cos?a - 7sin?a)cose o ¢ 0

CD = 3CL (103)
CD = 3CL (104)

The coefficients and their derivatives are presented in Figures

4 through 7. The range of o is that from -CL to + CL .
MAX MAX
The optimal control problem is considered next.

Optimal Control Problem

The approach to determining the solution of the optimal
control problem is given in Reference 2. The optimal control
problem is the maximization of the Hamiltonian with respect to
the control variables. The Hamiltonian is defined as follows

H = Puu + PYY + POO (105)

where Pu, PY' P0 are the costate variables associated with the

state variables u, ¥y, 0. The necessary condition for a costate
variable x (u, vy, or o) on an optimal trajectory is

F = - 98 (106)
X
Consequently, three additional differential equations result.

If the thrust vector angle is free, there are three control

variables. Since § is the sum of a ard Sv’ on’y two can be

“¥ > N

s

AR




a L& £ 4 8

N MO

considered as independent. The choice is o and § . If the
\%

thrust vector is fixed, §, = 0, then only « is free. Necessary

conditions for both cases will be addressed. Consider first
free Sv and a«. Introduce two control functions

F(Sv) = CT(cosS + PR51n8) (107)
G{a) = Fla) - CD + PR CL (108)
where
P
Y
8=0(.+SV,CT=q—S,PR—ﬁ (109)

The part of the Hamiltonian that is a function of Sv is

qSs

H(§ ) = X P ~—-F(8§ ) (111)
v 3u W v

The part of the Hamiltonian that is a function of o is

- .95,
Hio) = A P -=5-Gla) (111)

*
If SV is unconstrained, optimal Sv, Sv, is the solution of

dF (8 )
v
- =0 (112)

a8
v

Substitution gives

. Ao
tanio + SV) = PR (113)
*
If oo is unconstrained, optimal «, o , is the solution of
aG(o)
——— = 0 (114)
=Ted
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+ P, C = 0 (115)

[47]
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R CL =0 (lle)

Substituting Equations (103), (100), and (101) gives

* 2 %
-3tanoe + PR(Z - tan“a. ) = 0 (117)

*
We can solve for o« as a function of PR or PR as a function of
a*. We choose the latter so that we can examine the Hamiltonian

. * *
as a function of o and Sv

*
3tanc
P, = — (118)
*
R 2 - tanza

*
Thus, once o« 1is determined, PR is determined from Equation
*
(118) and Sv is obtained from Equation (113). In Figure 8, PR
* A
is presented as a function of a . In Figure 9, SV is presented
*

as a function of a*. The functions F and G, evaluated at o« and
* *
Sv, are presented in Figures 10 and 11 as functions of a« and
Crp-

In order that the Hamiltonian be a local maximum, it is
necessary that

H < 0 (119)
[ To 4
and
H <0 (120)
8§ 8
v Vv
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Both relations are evaluated for the optimal controls. In

Figures 12 and 13, Fg g and G, , are presented. Since both
vV

partial derivatives are negative, it follows from Equations
(110) and (111) that along the optimal trajectory

From Equation (109) and Figure 8, it follows that if o < 0,

PR < 0, therefore, PY <0, If 2> O, PR > 0, therefore, PY > 0.
Furthermore, if o = O, PY = 0.

If the thrust vector angle is fixed, assume &V = 0, then

along the optimal trajectory

In this case, Fm # 0. The optimal angle-of-attack is the solu-
tion of

i * * *
CT(-51na + PRcosa ) - CD“

Substituting Equations (103), (100), and (101) gives
* * * *
CT (-sina + PRcosa*) - 3K|sina |sinx cosa
+ PRK(Zcoszm* - sin?a®) |sina®| = ©

The optimal angle-of-attack is a function of PR' K, and CT'
Previously it was a function of only PR. By substituting tan-
gent trigonometric relations for sine and cosine terms, Equation
(124) can be transformed to a cubic equation in tana*

Cl-x + P)(1 + x%) - 3K|x|x + P_K(2 - x%)ix|

T R R

where




.....

*
X = tana (126)

Equation (125) can be solved for m* as a function PR, K, and C

or PR solved in terms of q*, K, and C Thus

T
CTx(l + xz) + 3Kix|x

P - (127)
R Cp(l + x%) + K(2 - x%) x|

PR is presented in Figure 14. In Figure 15, G(a*) is presented.

-~

*
u“a(m ) is presented in Figure 1l6.

For maximum Hamiltonian, Relation (119) must hold. From
Equation (111) it follows that along the optimal trajectory

P >0 (128)
This agrees with the previous case. Thus for both situations,
free or fixed thrust vector angle, Equations (121) and (128)

hold.

We next turn our attention to the development of the op-
timal trajectory solutions.

Optimal Trajectory Solutions

There are two ways to determine the optimal trajectory. X
The first way involves determining the costate differential ‘
equations according to Equation (106) and then integrating these
equations between appropriate boundary conditions The second
way is an extension of the first and involves developing dif-
ferential equations for the controls. These equations are also
a function of Equation (106).

The first approach will be employed here. Two differential
equations that involve the costate variables are required. Only [
two are required since the costate variables can be normalized

) ]
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with respect to P . The differential equations are in terms of
u

PR and Ps where

From Equation (106), the differential equations are
o oFaireoss + o
-Aacosv - Psxlocosy - G.A3PR ﬁ-coss +d

1 T
. 2 i as - _ .
a PR A3[W sin§- n cosyl + PRPsx1051ny

S
Asd s~ a) - G-AsnPR 5 PS - AIPSu51nY
T

1 1
-——. »e—u 1 -— 2 1
O PSPR i sin8§ + 3 ASPSPRcosY + PSA1031ny

These equations and the trajectory equations are integrated
forward in time to the burnout condition. Optimal controls are
imposed everywhere along the trajectory. Initial guesses for
PS(O) and PR(O) or «{0) are required. For problem 1, the final
flight path angle and altitude are free, thus

Ps(tf) = PR(tf) =0 (132)
Results are presented in Figures 17 through 23. The differences
for free SV or Sv = 0 are negligible for the speed and altitude.
The payoffs for Problem 1 are presented in Table 13. Since the
difference in the speed for the first problem is negligible, the
remaining problems will be constrained by Sv = 0.

For problems 2, 3, and 4, the optimal trajectory solutions
are presented in Figures 24 through 27. The initial wvalues for
a* and PS are presented in Table 14 along with the constraints
and optimal payoff. For reference purposes, the maximum speed
for Problem 1 and &, = 0 is V(tf) = 6583 ft/sec and tf = 60
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seconds. The maximum speeds for Problems 2 and 3 are less than

Problem 1. Also, the speeds for Problem 3 are less than Problem
2. The minimum time solutions for Problems 4 are less than the
corresponding maximum speeds for Problem 3. The flight path
angle soclutions show that the minimum time solution pitches up
to a higher flight path angle. Once this is reached, the op-
timal angle-of-attack solution shows that there is a rapid pitch

over until the angle-of-attack for -CL is reached. This
MAX
angle-of-attack is followed until apogee is reached. This is

one of the primary differences between the controls in the two
problems. For minimum time to apogee, the initial pitch up is

raster and the pitch down is also rapid until -CL is reached.
MAX

Recall that the angle-of -attack was limited to angles between

—CL and +CL . A second difference is that the minimum
MAX MAX

time trajectory may reach apogee before burnout, whereas, the
maximum speed solution at apogee never occurs before burnout; it

must occur at or later than burnout.
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SECTION V
CONCLUSIONS

Nominal and optimal boost climb trajectories were developed
for an air launched vehicle. The approximate nominal solutions
were in good agreement with the solutions obtained by numerical
integration of the differential equations of motion. The ad-
vantage of the approximate solutions is a rapid estimate of the
ascent of a rocket powered vehicle.

For the optimal trajectories, three payoffs were con-
sidered; maximum speed at burnout or apogee, minimum fuel to
apogee, and minimum time to apogee. The last two problems are
equivalent since the fuel burning rate is constant. Thrust
vectoring was considered, but the difference relative to no
vectoring was negligible for the problem of maximizing the speed
1t burnout. As a result, all subsequent problems assumed no
thrust vectoring.

in general, the optimal angle-of-attack decreased with
increasing time. The change was greater for the minimum time
solution. For this case, a fast pitch up occurred initially and
then the angle-of -attack rapidly decreased to the angle-of-

attack for -CL . This gave the fastest pitch over to apogee.

MAX

The minimum time solution may reach apogee before burnout.
The emphasis is on reaching apogee before burning all propel-
iant. For the problem of maximum speed at apogee, all
propellant is used prior to or at apogee. The reason for this
is that as long as there is propellant, the vehicle will con-
tinue to accelerate.

The analysis has been limited to constant thrust and burn-
ing rate and a single booster. If the constants are variable,

then relationships as a function of the appropriate variables




must be included. This will change the costate differential

equations if the engine variables are dependent upon any of the
state variables. 1If there is more than one booster, there may
be coast period between boosts. Care must be exercised to
insure that this possibility is properly accounted for.



& 1 a &

REFERENCES

1. Hankey, W. L., "Optimization of Lifting Re-entry Vehicles,"
ASD-TDR-62-1102, March 1963, Wright-Patterson AFB, Ohio.

2. Vinh, N. X., "Optimal Trajectories in Atmospheric Flight,"
Elsevier Scientific Publishing Company, Amsterdam - Oxford - New
York, 1981.

3. Gord, P. R., and Brigalli, A. J., "X24C-10D Force and Moment
Test Results at Mach Numbers from 0.4 to 8.0," AFFDL-TM-78-3
FXG, Jan 1978, Flight Dynamics Laboratory, Wright-Patterson AFB,
Qhio.

4. Dahlem, Valentine III, "Static Aerodynamic Characteristics
of Three Blunt Elliptical Bodies at Subsonic to Hypersonic
Speeds,"” FDMG TM 64-23, Flight Dynamics Laboratory, Jun 1964.

5. "Aerodynamic Design Data Book, Volume 1, Orbiter Vehicle
102," SD72-SH-0060, Volume 1L, Rockwell, October 1978.

6. Dahlem, Valentine III, Johnson, D. T., and Willbanks, H.
III, "Experimental and Analytical Study of Two Advanced Manned
Interceptor Configurations from Mach 0.2 to 6.0," AFFDL-TR-74-
14, April 1974, Flight Dynamics Laboratory, Wright-Patterson
AFH, Ohio.

7. "Aerodynamic Stability and Control Data, Model 844-2050,"
D2-80065, Boeing, May 19 ",

8. Kinroth, G. D., and Pawlikowski, T. P., "ASSET, Volume III. :
Final Aerodynamics and Performance," AFFDL TR-65-31 Volume 111,

December 1965, Flight Dynamics Laboratory, Wright-Patterson AFB,

Ohioc.




9. Hankey, W. L., and Elliott, G. A., "Hypersonic Lifting Body

Optimization," ARL 69-0056, May 1969, Aercspace Research
Laboratories, Wright-Patterson AFB, Ohio.

b W Yp]

P AR

ey S I ]

)




APPENDIX

CORRELATION BETWEEN EXPERIMENTAL AND
THEORETICAL AERODYNAMIC DATA

Seven different configurations were examined. Maximum
lift-to-drag ratio varied from approximately one to over four.
The seven configurations are the X24C, Reference 3, Super
Orbital Re-entry Test Integrated Environment (SORTIE), Reference
4, Shuttie Orbiter Vehicle 102, Reference 5, Advanced Manned
Interceptor (AMI), Reference 6, X20 Dynasoar, Reference 7,
Aerothermodynamic/Elastic Structural Systems Environmental Tests
(ASSET), Reference 8, and an optimized configuration from

Py

Reference 9. The configurations are illustrated in Figure A-1
where the AMI has the highest experimental maximum L/D ratio and
the SORTIE is the lowest. 1In all but the optimized configura-
tion, either CL and CD' or CN and CA were available. If the
latter were available, then the data were transformed to CL and
: CD. For the optimized configurations, only L/D distributions
were available.

The experimental data were obtained from wind tunnel tests.
The theoretical distribution were assumed to correspond to the
relations in Section II, Equations (14) and (16)

1

C Ksin’Scoss (14)

L

3
k. CD Ksin™ § + CDO (16)

" It will be assumed that

’ -
. § = o + o« (17)
There are different ways for correlating the data. The
approach here was to determine K, CD , and %, such that a satis-
o
factory fit to L/D and CL was obtained. For each data set, a

(1r ------------- ... el N e
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subset of the data was selected. The error is defined as fol- '
lows

2 2

N
2
ERROR = I {[E(theor)—E(exp)] +[CL(theor)—CL(exp)] }

i N1

(A-1)

N
= z

i

2
2 [ sin28c058
N

2
3 - E(exp)| + Ksin28coss-CL(exp) }
1 sin”8§ + C

where Nl is the first point and N2 is the last point. The -
objective was to minimize the error with respect to the )
parameters C and K. The parameter C was obtained from the '
minimization of the squared error between the therotical and

experimental values for L/D and was accomplished by employing a
golden section search technique. The minimization of the error
with respect to K was obtained by minimizing the error in CL.
For the optimized configuration only C was obtained. For all

. VRS

but this configuration, a, was assumed to be zero. For this
configuration it appeared that o, = 4° gave the best fit to the

data.

The results are presented in Figures A-2 through A-8. The ]
emphasis was on a satisfactory fit to the L/D data in the neigh- .
borhood of E*. Consequently, some of the data does not fit well
at larger angles-of ~attack. If maneuvers at large angles-of-

attack are required, than the emphasis should be on the region x
of interest. It can be seen that the experimental and theoreti- f
cal distributions match quite well in the neighborhood of Ex. =
The values of N (total number of experimental points), Nl’
N2’ CD , K, 8*, and Ek are presented in Table A. The solutions
o

R N AL
AP A VRIS PR IS I P



.....

* A
for 8 and E were obtained from Equations (20) and (23). For

the optimum vehicle, it was assumed that E* = 3, o, = 4°, and s*
and C were computed from Equations (24) and (21). for the
purpose of this investigation, the theoretical distributions for
CL and CD are satisfactory.

...........
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Table 1

ATMOSPHERIC PARAMETERS

A B
0 ¢ h < 25,000 feet 0.9858 x 10 2 ~0.3209 x 10~ %
25,000 < h ¢ 150,000 feet 0.4231 -0.4695 x 107
150,000 ¢ h < 250,000 feet -0.6150 ~0.3956 x 10°%
250,000 ¢ h 3.734 -0.5704 x 107%
Table 2
EXPONENTIAL DENSITY ERRORS
Altitude Error
(ft) (%)
0 -1.0
25,000 -1.0 ,
50,000 4.1
75,000 -3.7
100,000 -1.3
125,000 -3.4
150,000 -3.0
175,000 -0.8
200,000 3.9
225,000 5.8 .
250,000 -4.4 X
275,000 1.8
300,000 -3.1
38
G B N O S A A e . e ST e T T



oW N

.3675
.0916
.0342
.0159
. 0051
.0022

o O © O O O

' el Lo - e - DI
I“‘J'-(f"'l Aol o o __s...

A

8*(Deg)

29.32
17.57
12.24

9.34

EXACT

Table 3

AERODYNAMIC PARAMETERS

Table 4

CD /K

.0916
.0159
.0051
.0021

c.(8*y/c

D

2.28
2.73
2.86
2.92

D

AND APPROXIMATE AERODYNAMIC PARAMETERS

EXACT

E C

oW N = = O
O © O O o W

O O O O O O

*/K

t

.320
.209
.132
.087
.044
. 026

C

(@]

/C

W w w w w w

.................

APPROXIMATE

* * *
CD/CD E CL/K
o —e ——
1.74 0.74 0.814
2.28 1.17 0.323
2.57 1.63 0.167
2.73 2.10 0.100
2.86 3.07 0.047
2.92 4.05 0.027

39
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Table 5

SAMPLE BOOSTER PROPULSION CHARACTERISTICS

-

J Booster T/W(O) tB(sec) av(ft/sec) WPROP/W(O)
1 2.58 38.8 4200 0.44
2 2.94 3.9 5300 0.54
3 15.69 5.4 3500 0.40
4 18.40 3.2 2400 0.30
5 1.87 28.9 2100 0.31
6 3.75 26.9 4300 0.45
7 20.17 4.3 5600 0.40
8 9.42 5.5 1900 0.25
9 21.41 3.4 2800 0.31

10 16.40 3.0 1800 0.20
11 2.18 60.0 5900 0.49
12 2.84 60.0 8900 0.64
13 2.66 59.3 9500 0.68
14 3.00 60.1 9500 0.67
15 2.54 60.1 7200 0.56
1€ 2.71 59.0 7700 0.58
17 2.51 60.0 8200 0.69

S PN IR P o Pt

o
.
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V(o) =

W(0) =

= 20,925,780 ft, T = 37,600 1b, C

<

700
765
828
889
948
1004
1058
1109
1158
1204
1248

--------

700 ft/sec, vy(0) = 0

Table 6

INITIAL ROTATION RESULTS

o

, h(0) = 40,000 ft, 6(0) = 09,

14,997 1bs, W = 172.5 lb/sec, g = 32.174 ft/sec?,

tr

2.18
4.56
7.13
9.88
12.79
15.84
19.03
22.34
25.75
29.25

D

= 10.0 sec, § = 252, § =

EXACT

h

[ ]

40,000

i<

0 700

40,000 .0020 766

- 40,100 .0042 831

40,100 . 0065 895
40,300 .0090 958
40,500 .0116 1020
40,700 .0143 1081
40,100 .0172 1141
41,500 .0201 1199
41,900 .0230 1256
42,500 .0260 1311

41

.........

.

(0) = 2.115, C

L(0) = 6.920,

10.9 ft?
APPROXIMATE

X h e

0 40,000 0

2.01 40,000 .0020

4.22 40,100 .0042

6.64 40,100 .0067

9.27 40,300 .0093
12.11 40,500 .0122
15.16 40,700 .0152
18.43 41,100 .0185
21.92 41,500 .0220
25.62 42,100 .0258
29.54 42,800 .0297

.....



Table 7

CONSTANT FLIGHT PATH, POWER-ON COMPARISONS

The conditions from the exact solution at the end of the initial

pitch-up, t = 10 seconds, are the beginning of the constant flight
path, power-on trajectory.

V(0) = 1248 ft/sec, v, = 29.25°, h(0) = 42,500 ft, 6(0) = .026
W(0) = 13,272 1b, W = 172.5 lb/sec, T = 37,600 b, t, = 50 sec
§ = 0, Ch(0) = 0.95, S = 10.9 £t~ Z
EXACT APPROXIMATE !
X
ot v h ] v h <]
0 1248 42,500 .026 1248 42,500 .026
10 1903 50,300 .063 1958 50,300 .064
20 2690 61,800 117 2809 61,900 .121
30 3701 77,600 .192 3855 78,000 .200 g
40 5089 99,400 .295 5190 100,000 .307 R

50 7095 129,500 .437 7044 130,000 .453 o

A s

rry

42
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Table 8

ZERO ANGLE-OF-ATTACK, POWER-ON COMPARISONS

The conditions from the exact solution at t

= 30 seconds are the

initial conditions for the zero angle-of-attack, power-on trajec-

tory.

V(o)
W(0)

10
15
20
25
30

<<

2707
3193
3753
4405
5173
6087
7193

2707 ft/sec, v(0)
9787.5 1b, W = 172.5 1b/sec,

30.0
27.3
24.9
23.0
21.2
19.8
18.6

T = 38,500 1b, « = 0, t

EXACT

h

62,000
69,100
76,700
84,900
93,900
103,700
114,600

o
30 , h(0)

o]

0.118
0.154
0.196
0.247
0.307
0.379
0.464

43

= 62,000 ft, 6(0) = 0.118°,

CD(O)

R

<

2707
3268
3886
4573
5349
6238
7281

=

0.75, S = 10.9 ft?,
30 sec
APPROXIMATE

h'd h 5]
30.0 62,000 0.118
26.9 69,400 0.159
24.3 77,300 0.208
22.1 85,900 0.266
20.3 95,000 0.333
18.7 104,800 0.413
17.3 115,400 0.504

o s 8 <f

>, o

NS % s




Table 9

ZERO ANGLE-OF-ATTACK POWER-OFF COMPARISONS

The initial conditions correspond to the exact solution at bur-
nout, t = 60 seconds.

V(0) = 7193 ft/sec, v(0) = 18.60, h(0) = 117,400 ft, 6(0) = 0.464°

W = 4612 pounds, o = tR = 70 sec.

EXACT APPROXIMATE
h ) v h
114,600 0.464 7193 114,600
135,800 0.648 7097 135,900
153,800 0.830 7014 . 154,100
168,900 1.010 6946 . 169,000
180,900 1.190 6891 . 180,600
189,900 1.369 6852 . 189,100
1

1l

196,000 .548 6827 . 194,300
199,100 . 727 6817 . 196,400

- O O O
. v e e e e T

exact solution reaches apogee at 135.6 sec.
6582 ft/sec

199,600 ft

1.827°

approximate solution reaches apogee at t = 131.3 sec.
6817 ft/sec

196,400 ft

1.795°




Table 10

COMPLETE TRAJECTORY COMPARISONS

APPROXIMATE

t Vv h h

0 700 40,000 0 40,000
10 1248 42,500 0.026 42,800
30 2690 61,800 0.117 62,900
60 7193 114,600 0.464 117,500

130 6580 . 199,100 1.727 . 192,200




Table 11

OPTIMAL CONTROL PROBLEMS

MAXIMUM
PROBLEM PAYOFF CONSTRAINTS

V(tf)

vit,) y(t

£ ) =0

f

V(tf) =0, h(tf) specified

W(tf) none
N(tf) y(tf) = 0
W(tf) 0. h(tf) specified

Wit,.) =0, V(tf) specified

f

W(tf) V(tf) & h(tf) specified

Y(tf) = 0
= 0, h(tf) specified

= 0, V(tf) specified

V(tf) & h(tf) specified




Y(tf) = 0
FROBLEM PAYOFF CONSTRAINT
2 V(tf) none
3 V(tf) h(tf)
4 -tf h(tf)
Table 13
PROBLEM 1 RESULTS
* *
E! Y (tf) o (0) PS(O)
free 6609 ft/sec 31.9° -5.80
0 6583 ft/sec 34.8° -5.34
47
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Table 12

SELECTED OPTIMAL CONTROL PROBLEMS
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Table 14

OPTIMAL TRAJECTORY RESULTS

Problem «"(0) PZ(0) Payoff £, (SEC)  Constraint
2 35.86 -6.601 V(t.)=6256ft/sec 60 none
3a 36.05 -6.555 =6235ft/sec  60.4 h(t)=100,000f¢
3b 35.95 -6.093 =5935ft/sec  99.9 =150,000f¢t
4a 40.20 -7.732 t =48.7sec S =100, 000ft
4b 39.30 -6.331 =74.3sec — =150,000ft
Table A

AERODYNAMIC PARAMETERS

Vehicle N N, N, Cp, f §"(Deqy  E*

AMI 5 3 3 .0081  4.279 8.86 4.23
OPTIMUM 6 - - - - 12.25 3.00
X24C 7 4 5  .0222  2.705  14.29 2.54
DYNASOAR 7 3 3 .0488  2.411  19.06 1.83
SHUTTLE 11 1 11  .0543  2.821  18.77 1.86
ASSET 6 3 3 .1276  3.303  23.43 1.43
SORTIE 7 5 7 .1181  1.581  29.11 1.09

48
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